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Abstract The Monster group M , which is the largest among the 26 sporadic simple groups
is the automorphism group of the 196,884-dimensional Conway–Griess–Norton algebra
(simply called the Monster algebra). There is a remarkable correspondence between the
so-called 2A-involutions in M and certain idempotents in the Monster algebra (we refer
to these idempotents as Majorana axes). The isomorphism types of the subalgebras in the
Monster algebra generated by pairs of Majorana axes were calculated by S. Norton a while
ago (there are precisely nine isomorphism types). More recently these nine algebras were
characterized by S. Sakuma in the context of Vertex Operator Algebras, relying on earlier
work by M. Miyamoto. The properties of Monster algebras used in the proof of Sakuma’s
theorem are rather elementary and they have been axiomatized under the name of Major-
ana representations. In this terminology Sakuma’s theorem amounts to classification of the
Majorana representations of the dihedral groups together with a remark that all the repre-
sentations are based on embeddings into the Monster. In the present paper it is shown that
the alternating group A5 of degree 5 possesses precisely two Majorana representations, both
based on embeddings into the Monster. The dimensions of the representations are 20 and 26;
the scalar squares of their identities are 10 and 72/7, respectively (in the Vertex Operator
Algebra context these numbers are doubled central charges).
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270 A. A. Ivanov, Á. Seress

1 The Monster group and its algebra

The Monster group M contains two conjugacy classes of involutions with representatives t
and z, so that

CM (t) ∼= 2 · B M and CM (z) ∼= 21+24+ .Co1,

where B M is the Baby Monster sporadic simple group, Co1 is the largest Conway sporadic
simple group, whose double cover is the automorphism group of the Leech lattice �, Q :=
O2(CM (z)) ∼= 21+24+ is an extraspecial group with Q/〈z〉 and�/2� being isomorphic mod-
ules for CM (z)/Q ∼= Co1. Thus the structure of CM (z) is well understood independently of
the Monster. The M-conjugates of t and z are called 2A- and 2B-involutions, respectively
(this is because |CM (t)| > |CM (z)|).

One can say that the Monster was discovered through t and constructed through z. The
2A-involutions form a class of 6-transpositions in the sense that their pairwise products have
orders at most 6. The Baby Monster is a {3, 4}-transposition group and its plays an interme-
diate role between the Monster and Fischer’s 3-transposition groups. The M-orbit containing
a pair of 2A-involutions is uniquely determined by the conjugacy class containing their prod-
uct, while the totality of these products constitutes the union of the following nine conjugacy
classes of M :

1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A.

Thus there are precisely nine M-orbits on the pairs of 2A-involutions and these orbits are
naturally indexed by the above conjugacy classes.

The Monster contains a 2B-pure subgroup Z2 of order 22 such that

NM (Z2) ∼= 22+11+22.(M24 × S3),

where M24 is the largest Mathieu sporadic simple group. Similarly to CM (z) the subgroup
NM (Z2) can be constructed outside the Monster, for instance in terms of Parker’s loop or
tri-extraspecial groups (cf. [4] or Chapter 2 in [5]).

It can be shown (cf. [4]) that the degree of a non-trivial characteristic zero representation
of the free amalgamated product of CM (z) and NM (Z2) over their intersection is at least
196,883 and on the early stages of studying the Monster it was conjectured that the Monster
does possess a faithful module �1 over the real numbers of that dimension. Then it was
observed by S. Norton that (up to scalars) �1 must carry a unique inner product ( , )1, an
algebra product ·1 and a trilinear form, the latter can be taken to be

(u, v, w) �→ (u ·1 v,w)1,
which are M-invariant.

Thompson [15] has proved that (up to conjugation) there is at most one non-trivial homo-
morphismϑ1 of the free amalgamated product of CM (z) and NM (Z2) (over their intersection)
into GL(�1). In these terms Griess’s construction of the Monster in [3] amounts to the exis-
tence proof for ϑ1 followed by a justification that ϑ1(CM (z)) is the full centralizer of ϑ1(z)
in the image of ϑ1. In both stages the Norton algebra has played an essential role.

The final stretch in the uniqueness proof for the Monster was made by Norton [10] by
deducing the existence of �1 from the local structure of the Monster. Norton has computed
the parameters of the symmetric rank 9 association scheme corresponding to the action of M
by conjugation on the class of its 2A-involutions. The general theory of association schemes
applied to these parameters shows that �1 appears in the irreducible decomposition of the
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Majorana representations of A5 271

corresponding permutation module with multiplicity 1. By the Frobenious reciprocity this
means that CM (t) has 1-dimensional centralizer in �1 (the restriction of the Norton algebra
to this centralizer happens to be non-trivial).

Conway, when revised in [1] the construction of the Monster by R. Griess, has adjoined
to �1 a 1-dimensional trivial direct summand to obtain a 196,884-dimensional M-module
� on which he has defined what is now known as the Conway–Griess–Norton algebra · and
an associated inner product ( , ). Since

ϑ : M → GL(�)

is the direct sum ofϑ1 with the trivial 1-dimensional representation, the spaces of M-invariant
inner and algebra products on� are both 2-dimensional. The particular choice made by Con-
way was dictated by the following principle. Let S be the largest solvable normal subgroup
in NM (Z2), so that NM (Z2)/S ∼= M24. Then C�(S) is isomorphic to the 24-dimensional
permutational module of the latter factor group (cf. Proposition 3.1.21 (vii) in [5]) and the
restrictions of · and ( , ) to C�(S) are the natural point-wise (known as the Hadamard) prod-
ucts. It is most remarkable that this is precisely the choice dictated by the vertex operator
algebra structure on the Moonshine modules for which (�, ( , ), · ) is the Griess algebra.

The triple (�, ( , ), · ) was proved in [1] to satisfy the following (with � in the place of
V ):

(M1) ( , ) is a symmetric positive definite bilinear form on V that associates with · in the
sense that (u, v · w) = (u · v,w) for all u, v, w ∈ V , and · is a bilinear commutative
non-associative algebra product on V ;

(M2) the Norton inequality holds, so that (u · u, v · v) ≥ (u · v, u · v) for all u, v ∈ V .

The trivial summand of � is linearly spanned by the identity ι of (�, · ); the centralizer
of CM (t) in � is 2-dimensional containing four ·-idempotents, which are 0, ι, at and ι− at ,
where at is a Majorana axis in the sense that the following conditions hold (with at in place
of a and � in place of V ):

(M3) (a, a) = 1 and a · a = a, so that a is a ·-idempotent of length 1;
(M4) V = V (a)

1 ⊕ V (a)
0 ⊕ V (a)

1
22

⊕ V (a)
1

25
, where V (a)

μ = {v | v ∈ V, a · v = μv} is the set of

μ-eigenvectors of (the adjoint action of) a on V ;
(M5) V (a)

1 = {λa | λ ∈ R};
(M6) the linear transformation τ(a) of V defined via

τ(a) : u �→ (−1)2
5μu

for u ∈ V (a)
μ with μ = 1, 0, 1

22 ,
1
25 , preserves the algebra product (i.e. uτ(a) · vτ(a) =

(u · v)τ(a) for all u, v ∈ V );
(M7) if V (a)

+ is the centralizer of τ(a) in V , so that V (a)
+ = V (a)

1 ⊕ V (a)
0 ⊕ V (a)

1
22

, then the

linear transformation σ(a) of V (a)
+ defined via

σ(a) : u �→ (−1)2
2μu

for u ∈ V (a)
μ with μ = 1, 0, 1

22 preserves the restriction of the algebra product to V (a)
+

(i.e. uσ(a) · vσ(a) = (u · v)σ(a) for all u, v ∈ V (a)
+ ).

In the case of the Monster algebra τ(at ) = ϑ(t).
The conditions (M1)–(M7) imply that the eigenspaces V (a)

μ of (the adjoint action of) a
satisfy the fusion rules described in Table 1 (where Sp = {1, 0, 1

22 ,
1
25 } is the spectrum of a).
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272 A. A. Ivanov, Á. Seress

Table 1 The fusion rules
Sp 1 0 1

22
1

25

1 1 0 1
22

1
25

0 0 0 1
22

1
25

1
22

1
22

1
22 1, 0 1

25
1

25
1

25
1

25
1

25 1, 0, 1
22

The meaning of the fusion rules is the inclusion

V (a)
λ · V (a)

μ ⊆
⊕

ν∈Sp(λ,μ)

V (a)
ν

where λ,μ ∈ Sp and Sp(μ, λ) is the (λ, μ)-entry in Table 1.
The Majorana properties of the idempotents at are (implicitly) stated in [11], while in [8]

they are proved in the Vertex Operator Algebra context. A self-contained proof based on (a
modified) Griess’s construction is given in [5] (cf. Proposition 8.6.2).

The subalgebras in the Monster algebra generated by pairs of Majorana axes appeared
already in [2]. The structure of some of the nine algebras were justified in [1] and of the
remaining ones in [11]. These algebras are given in Table 2 whose content is explained
below.

Let t0 and t1 be 2A-involutions in M , let a0 = at0 and a1 = at1 be the corresponding
Majorana axes, and let ρ = t0t1. For ε ∈ {0, 1} let aε+2i be the image of aε under the i th
power of ρ (alternatively aε+2i can be defined as the Majorana axis associated with ρ−i tερi ).
Then the M-conjugacy class of ρ gives the name to the subalgebra in the Monster algebra
generated by a0 and a1 (the leftmost column of Table 2). In the 1A-type we have a0 = a1,
the algebra is 1-dimensional and this case is excluded from the table. In the 2A-type ρ is a
2A-involution and later on we will axiomatize this property as (M8) below. In the subalgebras
of type 3A, 4A or 5A, the 1-dimensional subspace spanned by the vector uρ, vρ or wρ is
invariant under the normalizer NM (〈ρ〉) isomorphic to 3 · F24, 21+24+ .Co3 or (D10 × F5).2,
respectively. Furthermore, in the types 3A and 4A the vector itself is stable under NM (〈ρ〉),
while in the type 5A it is preserved up to negation and satisfies the following:

wρ = −wρ2 = −wρ3 = wρ4 .

Thus Aut (5A) contains a Frobenius subgroup of order 20 acting naturally on {a−2, a−1, a0,

a1, a2} with a D10-subgroup centralizingwρ and the remaining elements negating this vector.
Notice that Norton’s inner product in [11] is 16 times ours, and his t0, u, v, andw are 64, 90,
192, and 8,192 times our a0, uρ, vρ , and wρ , respectively.

The two-Majorana-generated subalgebras in the Monster algebra were characterized in
the most remarkable paper by Sakuma [13].

Proposition 1.1 Let V be a real vector space endowed with an inner product ( , ) and an
algebra product ·, satisfying (M1), and let a0 and a1 be a pair of Majorana axes in V (i.e.,
vectors satisfying the conditions (M3)–(M7)). Then either a0 = a1, or the subalgebra gen-
erated by a0 and a1 is isomorphic to one of the eight algebras in Table 2. In particular, the
Norton inequality (M2) holds in the subalgebra.

Originally Sakuma’s theorem was stated in the context of vertex operator algebras, and
Norton’s inequality has been used in [13] via application of Theorem 9.1 from [9]. It was
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Majorana representations of A5 273

Table 2 The two-Majorana-generated algebras

Type Basis Products and angles

2A a0, a1, aρ a0 · a1 = 1
23 (a0 + a1 − aρ), a0 · aρ = 1

23 (a0 + aρ − a1)

(a0, a1) = (a0, aρ) = (a1, aρ) = 1
23

2B a0, a1 a0 · a1 = 0, (a0, a1) = 0

3A a−1, a0, a1, a0 · a1 = 1
25 (2a0 + 2a1 + a−1)− 33·5

211 uρ

uρ a0 · uρ = 1
32 (2a0 − a1 − a−1)+ 5

25 uρ

uρ · uρ = uρ

(a0, a1) = 13
28 , (a0, uρ) = 1

22 , (uρ, uρ) = 23

5

3C a−1, a0, a1 a0 · a1 = 1
26 (a0 + a1 − a−1), (a0, a1) = 1

26

4A a−1, a0, a1, a0 · a1 = 1
26 (3a0 + 3a1 + a2 + a−1 − 3vρ)

a2, vρ a0 · vρ = 1
24 (5a0 − 2a1 − a2 − 2a−1 + 3vρ)

vρ · vρ = vρ, a0 · a2 = 0

(a0, a1) = 1
25 , (a0, a2) = 0, (a0, vρ) = 3

23 , (vρ, vρ) = 2

4B a−1, a0, a1, a0 · a1 = 1
26 (a0 + a1 − a−1 − a2 + aρ2 )

a2, aρ2 a0 · a2 = 1
23 (a0 + a2 − aρ2 )

(a0, a1) = 1
26 , (a0, a2) = (a0, aρ2 ) = 1

23

5A a−2, a−1, a0, a0 · a1 = 1
27 (3a0 + 3a1 − a2 − a−1 − a−2)+ wρ

a1, a2, wρ a0 · a2 = 1
27 (3a0 + 3a2 − a1 − a−1 − a−2)− wρ

a0 · wρ = 7
212 (a1 + a−1 − a2 − a−2)+ 7

25wρ

wρ · wρ = 52·7
219 (a−2 + a−1 + a0 + a1 + a2)

(a0, a1) = 3
27 , (a0, wρ) = 0, (wρ,wρ) = 53·7

219

6A a−2, a−1, a0, a0 · a1 = 1
26 (a0 + a1 − a−2 − a−1 − a2 − a3 + aρ3 )+ 32·5

211 uρ2

a1, a2, a3 a0 · a2 = 1
25 (2a0 + 2a2 + a−2)− 33·5

211 uρ2

aρ3 , uρ2 a0 · uρ2 = 1
32 (2a0 − a2 − a−2)+ 5

25 uρ2

a0 · a3 = 1
23 (a0 + a3 − aρ3 ), aρ3 · uρ2 = 0, (aρ3 , uρ2 ) = 0

(a0, a1) = 5
28 , (a0, a2) = 13

28 , (a0, a3) = 1
23

shown in [6] that for the case of algebras generated by two Majorana axes the Norton inequal-
ity is a consequence of the conditions (M1) and (M3)–(M7). Since then following events
related to the Norton inequality took place:

(I) It was also observed in [6] that the fact that two Majorana axes generating a 2B-algebra
associate with any other element follows from the fusion rules. Originally this fact was
proved in [1] using the Norton inequality, and it has played an essential role in the deter-
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274 A. A. Ivanov, Á. Seress

mination of the Majorana representation of S4 of the shape (2B, 3A). This observation
makes the proof of the main result of [6] Norton inequality free.

(II) The Norton inequality has been used neither in the present paper, nor in [7].
(III) A Majorana representation of an elementary abelian group of order 9 extended by a

fixed-point-free involuntary automorphism where every pair of distinct Majorana axes
generate a 3C-subalgebra is not based on an embedding into the Monster (the Monster
does not have 3C-pure subgroups of order 9), but still satisfies the Norton inequality.

Sakuma’s theorem suggested the following definition introduced in [6]. Let G be a finite
group. Let T be a generating set of involutions in G which is a union of some conjugacy
classes of G. Let V be a real vector space equipped with ( , ) and · satisfying (M1) and (M2).
Let

ϕ : G → GL(V ) and ψ : T → V \ {0}
be a faithful representation and a mapping such that ψ(t) is a Majorana axis for every t ∈ T .
Suppose that if τ(ψ(t)) is the Majorana involution defined in (M6) then τ(ψ(t)) = ϕ(t), and
if g ∈ G conjugates t1 ∈ T onto t2 ∈ T then ϕ(g) maps ψ(t1) onto ψ(t2). Thus we require
that ϕ(G) permutes ψ(T ) the same way as the conjugation action of G permutes T (since ϕ
is faithful, the latter condition implies that ψ is injective). The Majorana representation of
the Monster possesses another important property which we would like to include into the
Majorana axiomatic:

(2A) if t0 and t1 are involutions in T , whose product is also contained in T , then their
respective images a0 and a1 generate a subalgebra of type 2A and

aρ = a0 + a1 − 8a0 · a1

is the image of t0t1.

Subject to the above conditions (M1)–(M7) together with (2A), the tuple

R = (G, T, V, ( , ), · , ϕ, ψ)
is said to be a Majorana representation of G. We assume that V is generated by the image
of ψ and call dim (V ) the dimension of R.

By the above discussion (by Proposition 8.6.2 in [5], to be more specific) the tuple

M = (M, 2A,�, ( , ), · , ϑ, η),
where η : t �→ at for t ∈ 2A, is a Majorana representation of the Monster. Furthermore,
let T ⊆ 2A, let G be the subgroup in M generated by T , and let V be the subspace in �
supporting the subalgebra in the Monster algebra generated by {at | t ∈ T }. Then

MG = (G, T, V, ( , )|V , ·|V , ϑ |G , η|T )
is a Majorana representation of G, which is said to be based on an embedding of G into M
(as a 2A-generated subgroup).

Thus Sakuma’s theorems tells us that the dihedral groups possess precisely nine Majorana
representations and that all these representations are based on embeddings into the Monster.
In [6] Sakuma’s result has been expanded to the symmetric group S4 (four Majorana repre-
sentations, all based on embeddings into the Monster). In the present paper we handle the
alternating group A5 by proving the following (compare Conjecture 8.8.1. in [5]).
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Majorana representations of A5 275

Theorem 1 The alternating group A5 of degree 5 possesses precisely two Majorana
representations, both are based on embeddings into the Monster. The dimensions of
the representations are 20 and 26, while the squared lengths of their identities are 10 and
72
7 , respectively.

It has been mentioned already that the Norton inequality condition has not been used to
prove the above theorem.

The explicit structures of the algebras underlying the representations of A5 will be recov-
ered within the proof of Theorem 1. These are important subalgebras in the Monster algebra.
It was desirable for a long time to unveil their structure but doing so based directly on the
Conway–Griess construction in [1,3], is a task no-one has accomplished yet. In this compar-
ison our treatment is the top of transparency, since it does not go beyond calculations in A5,
providing an evident demonstration of the efficiency of the Majorana theory we are building
up.

In the final section, we address the dependency issue for the axioms (M1) to (M7) and (2A).
As has been emphasised earlier, for all groups G for which the classification of Majorana
representations of G has been accomplished so far, Norton’s inequality (M2) is not required
to complete the classification although it holds in all the resulting algebras. Another question
is whether (2A) can be deduced from the other axioms. The answer to this question turns out
to be negative. Let us introduce

(2B) there is a pair of involutions in T whose product is also in T and whose images generate
a 2B-type subalgebra.

Theorem 2 The alternating group A5 of degree 5 possesses a representation satisfying
(M1), (M3) to (M7), and (2B). This representation is unique subject to the condition that the
images of at least one pair of involutions generate a 3C-type subalgebra. The dimension of
the representation is 21 and the squared length of the identity is 12.

Although the representation in Theorem 2 cannot possibly be based on an embedding into
the Monster, it still satisfies the Norton inequality.

2 Getting started

Let H ∼= A5 be the smallest non-abelian simple group isomorphic to the group of even
permutations of a 5-element set. For g ∈ H , we denote by o(g) the order of g. Recall that
A5 contains one conjugacy class of elements of order 2 comprising of 15 involutions, one
conjugacy class of elements of order 3, containing 20 elements, and two conjugacy classes
of elements of order 5, of size 12 each (if f is an element of order 5 then f and f 2 are in
different classes).

The following piece of notation deserves a special emphasis.

Definition 2.1 Let H (r) be a set of elements of order r in H ∼= A5 containing one represen-
tative from every subgroup of order r , so that

|H (2)| = 15, |H (3)| = 10, |H (5)| = 6,

where H (5) is contained in a single conjugacy class. For g ∈ H put

H (r)
s (g) = {h | h ∈ H (r), o(gh) = s}.

If f and g are elements of order 5 in H then σ f,g is defined to be 1 or −1 depending on
whether or not f and g are conjugate in H , and σ f is σ f,g for g ∈ H (5).
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276 A. A. Ivanov, Á. Seress

We will be dealing with a certain function on H which will not depend on the particular
choice of the transversals in Definition 2.1.

The 2A-generated A5-subgroups in the Monster and their properties are described in the
following.

Proposition 2.2 There are precisely two conjugacy classes of monomorphisms of H ∼= A5
into the Monster subject to the condition that H (2) is mapped into the class of 2A-involutions.
If ζ 3C and ζ 3A are monomorphisms from different classes so that, for some h ∈ H (3), ζ 3C (h)
is a 3C-element of the Monster and ζ 3A(h) is a 3A-element of the Monster, respectively then

(i) NM (ζ
3C (H)) ∼= (A5 × U3(8).3).2 and dim (C�1(CM (ζ

3C (H)))) = 20;
(ii) NM (ζ

3A(H)) ∼= (A5 × A12).2 and dim (C�1(CM (ζ
3A(H)))) = 26.

Proof The conjugacy classes of the A5-subgroups in the Monster and their centralizers can
be read from Table 3 in [12]. It can be seen from that table that every 2A-generated A5-
subgroup is fully normalized in the Monster. The dimensions of the centralizers in �1 were
calculated using [14], via fusion of the character tables of

CM (ζ
(3C)(H)) ∼= U3(8).3 and CM (ζ

(3A)(H)) ∼= A12

into the character table of the Monster (these calculations were performed by Steven Linton
and Sergey Shpectorov, respectively). ��

By the above proposition, H ∼= A5 possesses two Majorana representations Mζ 3C (H) and
Mζ 3A(H) based on embeddings into the Monster with 21 and 27 being upper bounds for their
dimensions. This information has formed the ground for posing Conjecture 8.8.1 in [5].

Now let

R = (H, T, V, ( , ), · , ϕ, ψ)
be an arbitrary Majorana representation of H ∼= A5. Since H (2) constitutes a single class of
involutions, T must be the whole of H (2). For t ∈ H (2), let at denote the Majorana generator
ψ(t). The action of H on V via ϕ is by naturally conjugating the indices of the Majorana
generators, followed by the expansion onto the whole of V via the H -invariance of the algebra
product. Let V1 and V2 denote the linear spans in V of

{at | t ∈ H (2)} and {at · as | t, s ∈ H (2)},
respectively. Since the Majorana axes are idempotents, V1 is contained in V2. Furthermore,
since H acts on V via ϕ and preserves the set of Majorana generators, both V1 and V2 are
H -submodules in V .

Lemma 2.3 Let t and s be distinct elements from H (2), let r = o(ts), and let Y be the
subalgebra in V generated by at and as . Then exactly one of the following holds:

(i) r = 2 and Y is 3-dimensional of type 2A linearly spanned by at , as and ats;
(ii) r = 5 and Y is 6-dimensional of type 5A linearly spanned by at , as, asts, atst , aststs and

wts (where wts = wst = −w(ts)2 = −w(ts)3 );
(iii) r = 3 and either

(a) Y is 3-dimensional of type 3C linearly spanned by at , as and atst ; or
(b) Y is 4-dimensional of type 3A linearly spanned by at , as, atst and uts (where

uts = ust ).

Proof The assertions follow from Proposition 1.1, condition (2A) and Table 2. ��
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Majorana representations of A5 277

We will say that the order 3 elements in H have type 3C or 3A depending on whether
(a) or (b) holds in Lemma 2.3 (iii). Thus for t, s ∈ H (2) by writing ts ∈ 3A we mean that
o(ts) = 3 and that the subalgebra generated by at and as is 4-dimensional of type 3A. This
terminology will make a perfect sense a posteriori. The group H ∼= A5 acts transitively by
conjugation on the set of unordered pairs {s, t}, where s, t ∈ H (2) and o(st) = 3. Hence for
all such pairs the subalgebra generated by at and as is of the same type, and we can say that
the algebra is of type 3A or 3C .

Directly by Lemma 2.3 we obtain the following upper bound on dim(V2).

Lemma 2.4 The following assertions hold:

(i) if the 3-elements in H are of type 3C, then V2 is spanned by the 21-element set

S(3C) = {at | t ∈ H (2)} ∪ {w f | f ∈ H (5)};
(ii) if the 3-elements in H are of type 3A, then V2 is spanned by the 31-element set

S(3A) = {at | t ∈ H (2)} ∪ {uh | h ∈ H (3)} ∪ {w f | f ∈ H (5)}.
Lemma 2.5 Let S(X) be the spanning set of V2 as in Lemma 2.4, where X = 3C or 3A
depending on the type of 3-elements in H. Then H acting on V2 preserves S(X) as a whole.
Furthermore, the permutation action of H on S(X) is similar to its action by conjugation on
the set of subgroups of order 2 and 5 in the 3C-case and on its subgroups of order 2, 3 and
5 in the 3A-case.

Proof For g ∈ H , the fact that ϕ(g) acts on the Majorana generators by g-conjugation of
the corresponding indices implies that

aϕ(g)t = ag−1tg, uϕ(g)h = ug−1hg and w
ϕ(g)
f = wg−1 f g. (1)

Since uh andw f do not depend on the choice between the element in the index and its inverse
and since an element of order 5 is not conjugate in H to its second and third powers, the
assertion follows. ��

At this stage the sense in which the choice of the transversals H (3) and H (5) is irrelevant
must become perfectly clear.

Let U (X)
2 be a vector space having S(X) as a basis, considered as an H -module in the

obvious manner, and let

π : U (X)
2 → V2

be the corresponding H -projection (of course V2 also depends on the type X of the 3-ele-
ments). By Lemma 2.5, U (X)

2 possesses a clear characterization as the direct sum of the
permutation modules associated with the conjugation action of H on its sets of subgroups of
order 2 and 5 in the 3C-case, and of order 2, 3 and 5 in the 3A-case.

3 Some eigenvectors

The following Table 3, which shows the eigenspace decomposition of some of the nontrivial
Norton–Sakuma algebras, is essential for our classification of the Majorana representations
of A5. The decompositions are with respect to the adjoint action of a0 and the 1-eigenvector,
which is a0 itself, is omitted. The eigenvalue properties can be checked directly making
use of the multiplication rules in Table 2, while the completeness follows from dimension
considerations and from the obvious linear independence of the vectors in Table 3.
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Table 3 Eigenspaces in two-Majorana-generated algebras

Type 0 1
22

1
25

2A a1 + aρ − 1
22 a0 a1 − aρ

5A − 3
25 a0 + a1 + a−1 + a2 + a−2 wρ + 1

27 (a1 + a−1 − a2 − a−2) a1 − a−1

wρ − 3·7
212 a0 + 7

26 (a2 + a−2) a2 − a−2

3C a1 + a−1 − 1
25 a0 a1 − a−1

3A uρ − 2·5
33 a0 + 25

33 (a1 + a−1) uρ − 23

32·5 a0 − 25

32·5 (a1 + a−1) a1 − a−1

Lemma 3.1 For t ∈ H (2), let {s1, s2}, {h1, h2}, and { f1, f2} be the sets H (r)
2 (t) for r = 2, 3,

and 5, respectively. Then for i, j ∈ {1, 2}, each of the following is an eigenvector of (the
adjoint action of) at on V . The α- and β-vectors are 0- and 1

22 -eigenvectors, respectively. For
the vectors depending on the type of 3-elements in H the type is indicated by the superscript.

αt (2) = as1 + as2 − 1

22 at ;

αt ( fi , 1) = − 3

25
at +

∑

1≤k≤4

a f −k
i t f k

i
; αt ( fi , 2) = w fi − 3 · 7

212 at + 7

26

∑

k=1,4

a f −k
i t f k

i
;

α
(3C)
t (h j ) = ah−1

j th j
+ ah j th−1

j
− 1

25
at ;

α
(3A)
t (h j ) = uh j − 2 · 5

33 at + 25

33 (ah−1
j th j

+ ah j th−1
j
);

α
(3C)
t ( fi , 3) = − 3

27 at + 5

26 (as1 + as2)− 1

26

∑

p∈H (2)
3 (t)

ap − 3

27

∑

1≤k≤4

a f −k
3−i t f k

3−i

+ 5

27

∑

1≤k≤4

a f −k
i t f k

i
+

∑

e∈H (5)
3 (t)

we −
∑

d∈H (5)
5 (t)

wd ;

α
(3A)
t ( fi , 3) = − 3

27 at + 11

26 (as1 + as2)− 1

26

∑

p∈H (2)
3 (t)

ap + 11

27

∑

1≤k≤4

a f −k
i t f k

i

+ 3

27

∑

1≤k≤4

a f −k
3−i t f k

3−i
− 33 · 5

211

∑

h∈H (3)
5 (t)

uh +
∑

e∈H (5)
3 (t)

we −
∑

d∈H (5)
5 (t)

wd ;

α
(3C)
t (5) = − 32

210 at − 3

26 (as1 + as2)− 5

25

∑

p∈H (2)
3 (t)

ap + 23

27

∑

q∈H (2)
5 (t)

aq

−
∑

e∈H (5)
3 (t)

we +
∑

d∈H (5)
5 (t)

wd ;

α
(3A)
t (5) = − 32

210 at + 3

26 (as1 + as2)− 7

26

∑

p∈H (2)
3 (t)

ap + 5 · 7

27

∑

q∈H (2)
5 (t)

aq
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−33 · 5

211

∑

h∈H (3)
3 (t)∪H (3)

5 (t)

uh −
∑

e∈H (5)
3 (t)

we +
∑

d∈H (5)
5 (t)

wd ;

βt (2) = as1 − as2 ; βt ( fi ) = w fi − 1

27 (a f −1
i t fi

+ a fi t f −1
i

− a f −2
i t f 2

i
− a f −3

i t f 3
i
);

β
(3A)
t (h j ) = uh j − 23

32 · 5
at − 25

32 · 5
(ah−1

j th j
+ ah j th−1

j
).

Proof The eigenvectors αt (2), αt ( fi , 1), αt ( fi , 2), α(X)t (h j ) and all the 1
22 -ones can be seen

inside the subalgebras generated by at together with one further Majorana generating axis.
The vector α(X)t ( fi , 3), i = 1, 2, is the product of αt (2) and αt ( fi , 1), and α(X)t (5) is the

product of αt ( f1, 1) and αt ( f2, 1). All of these products are 0-eigenvectors due to the fusion
rules in Table 1. Although the factors do not depend on the type of 3-elements, their product
does and hence the superscripts have been applied. All products are linear combinations of
terms of the form ap · aq , for various p, q ∈ H (2). The terms ap · aq can be computed by the
multiplication rules in Table 2; the identification of the variables in Table 2 with the elements
of H (2) is provided by Lemma 2.3. Carrying out these computation in GAP [14] results in
the formulas α(X)t ( fi , 3) and α(X)t (5) as stated in this lemma. ��

We note that we do not claim linear independence of the eigenvectors described in
Lemma 3.1.

Remark 3.2 Since the proof of Lemma 3.1 is the first occasion that we use GAP, this is the
place to comment on the role of computer calculations in this paper. In the 3A case, we are
working with 31 generators of the algebra (15 a’s, 10 u’s, and 6 w’s), and we try to compute
the 31 matrices Ni of size 31×31 describing the algebra products: row j of Ni is the product
of the i th and j th generators, expressed as a linear combination of the 31 generators. The
product of two arbitrary algebra elements is a linear combination of some rows of the Ni ;
in extreme cases, all 961 rows occur in the linear combination. We prefer computing alge-
bra products by computer, because hand calculations, although straightforward, are prone to
errors.

Later, we have to perform other linear algebra tasks as well. It will turn out that the algebra
is 26 dimensional, and we perform a base change to 26 vectors generating the algebra, and
5 vectors that represent 0. We also have to compute the nullspaces of the matrices Ni that
describe the multiplications by Majorana axes, and perform Gram–Schmidt orthogonaliza-
tion for some vectors. All of these tasks are straightforward, and readily accomplished by
built-in functions in GAP, but would be unpleasant or downright impossible to perform by
hand.

The 1
25 -eigenvectors can be easily recovered from the Majorana condition (M6). In fact,

if x ∈ {a, u, w} and ρ is an element of order 2, 3 (of type 3A) or 5, and ρ generates a cyclic
subgroup in H which is not normalized by t ∈ H (2), then

xρ − xtρt

is a 1
25 -eigenvector of at [see (1) in the proof of Lemma 2.5]. In this way we obtain 8 and 12

vectors (in the 3C- and 3A-cases, respectively) spanning the 1
25 -eigenspace of at on V2. These

vectors can easily be listed on a demand (similarly to the eigenvectors in Lemma 3.1, the
linear independence is not assumed). Notice that 8 and 12 are the dimensions of commutator
subspaces of t in the linear spans of U (3C)

2 and U (3A)
2 , respectively.
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We will make use of the 1
25 -eigenvectors through the following general principle of

Majorana calculus.

Lemma 3.3 Let v ∈ V, t ∈ T , and at = ψ(t). Then

at · v = 1

2
at · (v + vϕ(t))+ 1

26 (v − vϕ(t)).

Proof By the definition of Majorana representation, ϕ(t) acts on V as τ(at ), therefore by
(M6) v− vϕ(t) is a 1

25 -eigenvector (possibly zero) of (the adjoint action of) at , and the result
follows. ��

4 Scalar product on V2

In this section we reconstruct the scalar product ( , ) on the subspace V2. Because of the
bilinearity of the scalar product, it suffices to calculate

{(x, y) | x, y ∈ S(X)}
where S(X) is the spanning set of V2 as in Lemma 2.4 and X = 3C or X = 3A depending
on the type of 3-elements in H (i.e., on the type of subalgebras generated by the pairs at and
as of Majorana generators such that the H -product of t and s has order 3). Since both the
scalar product and the spanning set S(X) are H -invariant, while the product is symmetric, it is
sufficient to calculate the values (x, y) for orbit representatives of H on the set of unordered
pairs of vectors from S(X). First we summarise the information on the scalar product implied
by the structure of the two-Majorana-generated subalgebras. This information can be read
from Table 2.

Lemma 4.1 The following assertions hold, where t, s ∈ H (2) :
(i) if t = s then (at , as) = 1;

(ii) if s ∈ H (2)
2 (t) then (at , as) = 1

23 ;

(iii) if s ∈ H (2)
5 (t) then (at , as) = 3

27 ;

(iv) if ts ∈ 3C then (at , as) = 1
26 ;

(v) if ts ∈ 3A then (at , as) = 13
28 ;

(vi) if h ∈ 3A then (uh, uh) = 23

5 ;

(vii) if f ∈ H (5) then (w f , w f ) = 53·7
219 ;

(viii) if h ∈ H (3)
2 (t), then (at , uh) = 1

22 ;

(ix) if f ∈ H (5)(t), then (at , w f ) = 0.

The scalar products of the remaining pairs of spanning vectors from S(X) will be recov-
ered from the orthogonality relations for the eigenvectors of at with different eigenvalues
[these relations hold since by (M1) the scalar and algebra products associate]. Of course it is
sufficient to calculate the values of the scalar product for a representative of every H -orbit.
Given the action of H on S(X) described in Lemma 2.5 it is an elementary exercise to check
that every orbit on pairs of generating vectors is represented either in Lemma 4.1 or in the
following Lemma 4.2, which extends via the equalities

uh = uh−1 , w f = −w f 2 = −w f 3 = w f −1 .
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Lemma 4.2 The following assertions hold:

(i) Let t ∈ H (2). Then

(a) if f ∈ H (5)
3 (t) then (at , w f ) = 7

213 and − 72

214 in the 3C- and 3A-cases, respectively;

(b) if f ∈ H (5)
5 (t) then (at , w f ) = − 7

213 and 72

214 in the 3C- and 3A-cases, respectively;

(ii) if f, e ∈ H (5) and e �= f , then (w f , we) = − 52·7
219 and 7·29

219 in the 3C- and 3A-cases,
respectively;

(iii) if h ∈ H (3)
r (t) then (at , uh) = 1

32 or 1
2·32 if r = 3 or 5, respectively;

(iv) if f ∈ H (5) and h ∈ H (3), then (uh, w f ) = 5·7
29·32 or − 5·7

29·32 if o( f −1h−1 f h) = 3 or 5,
respectively;

(v) if e, h ∈ H (3), e �= h, then (uh, ue) = 23·17
34·5 or 24

34·5 if o(he) ∈ {2, 3} or o(he) = 5,
respectively.

Proof To prove (i) we expand the equalities

(αt (2), βt ( f1)) = 0 and (αt ( f1, 2), βt (2)) = 0.

The first equality implies that the inner products in cases (a) and (b) must differ only by
the sign, while the second one provides us with the exact values (depending on the type of
3-elements in H ).

Since H acts doubly transitively when conjugating its subgroups of order 5, (ii) can be
deduced by expanding the orthogonality relation

(αt ( f1, 2), βt ( f2)) = 0

and substituting the necessary scalar product values computed in Lemma 4.1 and in assertion
(i) of the current lemma.

From now on within the proof we deal exclusively with the 3A-case. There are precisely
three H -orbits on the set of pairs consisting of a subgroup of order 2 and a subgroup of
order 3. The inner products corresponding to one of the orbits is given in Lemma 4.1 (viii).
Similarly to the proof of part (i) of this lemma, the pair of equalities

(αt (2), β
(3A)
t (h1)) = 0 and (α

(3A)
t (h1), βt (2)) = 0,

computes (uh, am) when h ∈ H (3)
5 (m). After that, we have enough information to expand

(αt ( f1, 1), β(3A)
t (h1)) = 0

to obtain (uh, am) when h ∈ H (3)
3 (m).

Now the values in (iv) can be computed in a similar way from the orthogonality relations

(α
(3A)
t ( f1, 2), β(3A)

t (h1)) = 0, (αt ( f1, 2), β(3A)
t (h2)) = 0.

Finally, the values in (v) are obtained from

(α
(3A)
t (h1), β

(3A)
t (h2)) = 0

when e ∈ H (3)
5 (h) and the last case e ∈ H (3)

r (h) with r ∈ {2, 3} follows from

(α
(3A)
t ( f1, 3), β(3A)

t (h1)) = 0.

��
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Now, as the scalar product on V2 is fully recovered, we are in a position to calculate the
dimension of V2. In fact, since by (M1) the scalar product is a positive definite bilinear form,
a vector v ∈ V2 is zero if and only if its scalar square is zero. This enables us to determine the
linear dependencies between the vectors in S(X), or, equivalently, the kernel of the projective
maps

π : U (X)
2 → V2.

Recall that the transversal H (5) consists of H -conjugate elements of order 5.

Lemma 4.3 The kernel of the projection π : U (3C)
2 → V2 is 1-dimensional spanned by the

vector

w :=
∑

f ∈H (5)

w f .

Proof The fact that the given sum is in the kernel is immediate by Lemma 4.1 (vii) and
Lemma 4.2 (i),(ii). The fact that the linear span of this vector exhausts the kernel has been
checked in [14]. ��

To describe the kernel of the map π : U (3A)
2 → V2 in the 3A-case, we introduce the

following vectors. For f ∈ H (5), define A f := {h ∈ H (3) | f ∈ H (5)
2 (h) ∪ H (5)

2 (h−1)} and
let

r( f ) = 1

27

∑

t∈H (2)
3 ( f )

at − 1

27

∑

t∈H (2)
5 ( f )

at + 32 · 5

211

∑

h∈A f

uh + w f .

Lemma 4.4 The kernel of the projectionπ : U (3A)
2 → V2 is 5-dimensional, and it is spanned

by the differences r( f )− r( f ′), for f, f ′ ∈ H (5).

Proof By computation in [14]. ��
The vectorw defined in Lemma 4.3 is non-zero in the 3A-case and will play an important

role in the subsequent exposition because of the following consequence of Lemmas 4.1, 4.2
and 4.4.

Lemma 4.5 In the 3A-case V2 is 26-dimensional with basis

B(3A) = {at | t ∈ H (2)} ∪ {uh | h ∈ H (3)} ∪ {w}.
Furthermore, for t ∈ H (2) and h ∈ H (3) we have

(at , w) = (uh, w) = 0, (w,w) = 34 · 5 · 7

217 .

For f ∈ H (5), we can express w f in the newly introduced basis B(3A) by writing w f as a
linear combination of B(3A) and vectors of the form r( f ) − r( f ′), for f ′ ∈ H (5), and then
keeping only the B(3A)-part of the linear combination. We obtain

w f = 1

6
w + 1

27

⎛

⎜⎝
∑

t∈H (2)
5 ( f )

at −
∑

t∈H (2)
3 ( f )

at

⎞

⎟⎠

+ 32 · 5

212

⎛

⎝
∑

h∈H (3), o( f −1h−1 f h)=3

uh −
∑

h∈H (3), o( f −1h−1 f h)=5

uh

⎞

⎠ . (2)
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In the Monster algebra setting, formula (2) was already deduced on p. 300 in [11], modulo
a sign discrepancy and a different scaling of basis vectors (in our notation, Norton used the
vectors 64at , 90uh, 8192w f as basis).

For t ∈ H (2) and s ∈ H (2)
5 (t), we can now express at · as in B(3A) using (2) together the

description of the product in terms of the spanning set S(3A) given in Lemma 2.3 (ii) and
Table 2.

5 Completing the business

The main assertions in Theorem 1 (apart from the identities to be computed in the next
section) are implied by the following

Proposition 5.1 For a Majorana representation of H ∼= A5 the algebra product is closed
on V2 and it is uniquely determined by the type of 3-elements.

The complexity and major details of the proof of Proposition 5.1 depend heavily on the
type of 3-elements and so the proof is accomplished in two separate subsections.

5.1 Product closure in the 3C-case

Throughout the subsection we assume that the 3-elements in H are of type 3C . Let V2(t) be
the subspace in V2 spanned as taken for all s ∈ H (2), and by the two w f for f ∈ H (5)

2 (t).
As an immediate consequence of Lemma 2.3 we have the following.

Lemma 5.2 If v ∈ V2(t) then at · v is an explicitly computable vector in V2. ��
Next we compute the product at · w f , where

f ∈ H (5)
3 (t) ∪ H (5)

5 (t).

For r = 3 or 5 the involution t conjugates the two elements in H (5)
r (t). Therefore, by

Lemma 3.3 it suffices to calculate the products at · wr (t), where

wr (t) =
∑

f ∈H (5)
r (t)

w f for r = 3, 5.

This will be achieved through the following lemma.

Lemma 5.3 For h ∈ H (3)
2 (t) let

α = αt (2) · α(3C)
t (h), β = βt (2) · α(3C)

t (h).

Then the following assertions hold:

(i) α and β are 0- and 1
22 -eigenvectors of at , respectively;

(ii) there are explicitly computable vectors vα and vβ which belong to V2(t) and εα,
εβ ∈ {1,−1} such that

α = εα(w3(t)− w5(t)+ vα);
β = εβ(w3(t)+ w5(t)+ vβ).
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Proof The assertion (i) follows from the fusion rules in Table 1, while (ii) is implied by the
particular shape of the eigenvectors αt (2), βt (2) and α(3C)

t (h). ��
By Lemmas 5.2 and 5.3(ii), at · vα and at · vβ are explicitly computable vectors in V2.

Therefore, the equalities

at · α = 0 and at · β = 1

22 β

enable us to express at · w3(t) and at · w5(t) as linear combinations of vectors in the span-
ning set S(3C) of V2. Now it only remains to incur Lemma 3.3 and apply GAP to obtain the
following explicit version of the product rule.

Lemma 5.4 Let t ∈ H (2), let f ∈ H (5)
r (t) for some r ∈ {3, 5}, and suppose that the

3-elements in H are of 3C-type. Then

at · w f = (−1)
r+1

2
7

213 at − 7

214

∑

s∈H (2)
5 (t)

σst as + 1

27

∑

d∈H (5)
2 (t)

wd

+ 1

24

∑

e∈H (5)
8−r (t)

we + 5

26w f + 3

26wt f t .

Here σst is as in Definition 2.1. ��
Next we calculate the product of two distinct w’s. Since the conjugation action of H on

the set of its order 5 subgroups is doubly transitive, it is sufficient to learn how to multiply
w f1 andw f2 for { f1, f2} = H (5)

2 (t). Notice that t is uniquely determined by the pair { f1, f2}
as the only involution in H (2) which inverts both elements in the pair. By Lemmas 5.2 and
5.4, the subspace V2 is at -stable in the sense that it contains the product at · v for every
v ∈ V2. We apply the following elementary observation appeared as Lemma 1.8 in [6] and
called there a resurrection principle.

Lemma 5.5 Let a be a Majorana axis, and let W be an a-stable subspace of V . For v ∈ V
suppose that

αv = v + wα and βv = v + wβ

are 0- and 1
22 -eigenvectors of a, respectively, for some wα,wβ ∈ W . Then

v = −[4a · (wα − wβ)+ wβ ],
in particular v ∈ W.

Now we are ready to round up the 3C-case.

Lemma 5.6 Let f1, f2 ∈ H (5), f1 �= f2 and let {t} = H (2)
2 ( f1) ∩ H (2)

2 ( f2). Then

w f1 · w f2 = −3 · 7

218 at + 3 · 7

220

∑

r∈H (2)
2 (t)

ar + 7

217

∑

q∈H (2)
3 (t)

aq − 7 · 19

221

∑

s∈H (2)
5 (t)

as

− 7

29 (w f1 + w f2)− 13 · 19

214

∑

d∈H (5)
5 (t)

wd − 3 · 67

214

∑

c∈H (5)
3 (t)

wc.
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Proof We apply Lemma 5.5 for W = V2, a = at ,

v = w f1 · w f2 , αv = αt ( f1, 2) · αt ( f2, 2), βv = αt ( f1, 2) · βt ( f2)

and perform calculations with [14]. ��
The completed case can be summarised as follows.

Proposition 5.7 Let H3C = (H, H (2), V, ( , ), · , ϕ, ψ) be a Majorana representation of
H ∼= A5, where at = ψ(t) for t ∈ H (2), and suppose that whenever t, s ∈ H (2) with
o(ts) = 3 the subalgebra generated by at and as is 3-dimensional (of type 3C). Then

(i) V is 20-dimensional spanned by {at | t ∈ H (2)} ∪ {w f | f ∈ H (5)} subject to the
relation

∑

f ∈H (5)

w f = 0

(where H (5) is a 6-element subset of a conjugacy class of elements of order 5 in H,
which intersects every cyclic subgroup of that order);

(ii) the inner product ( , ) is as described in Lemmas 4.1 and 4.2;
(iii) the algebra product · is as described in Lemmas 2.3, 5.4 and 5.6.

Thus the isomorphism type of H3C is uniquely determined and H3C ∼= Mζ (3C)(H). ��
5.2 Product closure in the 3A-case

Now we assume that the 3-elements in H are of type 3A. In this case the GAP calculations
are more substantial.

Our first objective is to show that V2 is at -stable for t ∈ H (2).

Lemma 5.8 Let V2(t) be the subspace in V2 spanned by

L = {as | s ∈ H (2)} ∪ H (3)
2 (t) ∪ {b − bϕ(t) | b ∈ B(3A)}.

Then V2(t) is a 21-dimensional and at · v ∈ V2 for every v ∈ V2(t).

Proof The inclusion at · v ∈ V2 for v ∈ V2(t) follows from Lemmas 2.3 and 3.3 while
the dimension of V2(t) can be deduced by calculating the rank of the Gram matrix of the
spanning set L . ��

Notice that H (3)
3 (t) and H (3)

5 (t) contain four elements each. Let A and B be the t-orbits

on H (3)
3 (t), let C and D be the t-orbits on H (3)

5 (t), for Z ∈ {A, B,C, D} put

uZ =
∑

d∈Z

ud ,

let K = {u A, u B , uC , u D, w}, and let W2(t) be the subspace in V2 spanned by K .

Lemma 5.9 The set K is linearly independent and W2(t) is a complement to V2(t) in V2.

Proof The set K ∪ L spans V2 because L contains all 15 vectors as ∈ H (2), K contains
w, and the 8 vectors uh , for h ∈ H (3) \ H (3)

2 , can be written as linear combinations in

{uh − uϕ(t)h | h ∈ H (3)} ∪ {u A, u B , uC , u D}.
Then, the linear independence of K and the complementation property follows from

dimension considerations. ��
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As a direct consequence of Lemmas 5.8 and 5.9 we have the following.

Lemma 5.10 The subspace V2 is at -stable if and only if it contains at · k for each of the five
k ∈ K . ��

For i ∈ {1, 2} and j ∈ {2, 3}, consider the at -eigenvectorsαt ( fi , j) defined in Lemma 3.1.
The relation

at · αt ( fi , j) = 0

equalizes a linear combination of the vectors in

K = {at · k | k ∈ K }
with a vector from V2. Solving this system of four equations in the five unknowns in K by
GAP, we obtain the following.

Lemma 5.11 The following assertions hold:

(i) each of at · u A and at · u B is contained in V2;
(ii) each of at · uC and at · u D is a scalar multiple of at · w plus a vector from V2.

The explicit version of Lemma 5.11, combined with at · (uh − uϕ(t)h ) = 1
32 (uh − uϕ(t)h ),

gives

Lemma 5.12 If h ∈ H (3)
3 (t), then

at · uh = 1

32 at + 1

26 (5uh + 3utht − 4uht − 4uth). ��

It should not be a surprise that the product in the above lemma is exactly as in the second
formula in the proof of Lemma 4.16 in [6].

By Lemmas 5.10 and 5.11 (ii) the subspace V2 is at -stable if and only if it contains at ·w.
Thus the latter vector will be in the centre of our attention. We start with the following.

Lemma 5.13 at · w is a 1
22 -eigenvector of at .

Proof Since wϕ(t) = w, by (M5), (M6) and (M7) we can write

w = (at , w) at + w0 + w 1
22
,

where wμ is a μ-eigenvector of at . By Lemma 4.5 the vector w is perpendicular to at ,
therefore at · w = 1

22w 1
22

and the assertion follows. ��

Lemma 5.14 Let Q be the subspace in V2 spanned by the five 1
22 -eigenvectors of at defined

in Lemma 3.1 and let (at · w)π be the orthogonal projection of at · w into Q. Then

(at · w)π = 3

210

∑

s∈H (2)
2 (t)

σqs as + 3

29

∑

r∈H (2)
5

σtr ar + 33 · 5

214

∑

h∈H (3)
5 (t)

σht uh + 1

23w,

where q is an arbitrary element from H (3)
2 (t) = {h1, h2} defined in Lemma 3.1 and σ f is the

function introduced in Definition 2.1.
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Proof By Lemmas 4.1 and 4.2, the scalar product on V2 is known and therefore we can
compute an orthogonal basis {β1, . . . , β5} for Q by the Gram–Schmidt procedure. Then

(at · w)π =
∑

1≤i≤5

(βi , at · w)
(βi , βi )

βi .

The quantities (βi , at · w) are also computable, since by (M1)

(βi , at · w) = (at · βi , w) = 1

22 (βi , w)

and the last expression is a scalar product of two vectors in V2. Of course, the exact coefficients
in (at · w)π were computed in GAP. ��

If we put

xt = at · w − (at · w)π ,
then the inclusion at ·w ∈ V2 is equivalent to the fact that xt is the zero vector. In any event
let V +

2 (t) be the subspace of V spanned by V2 together with xt .

Lemma 5.15 The subspace V +
2 (t) is at -stable.

Proof The result is an immediate consequence of Lemmas 5.10, 5.11 and 5.13 in view
of the observation that xt is a 1

22 -eigenvector of at (being the difference of two such
eigenvectors). ��

Since we have explicit formulas for multiplication by at in V +
2 (t), we can compute the

eigenspaces of the adjoint action of at on V +
2 (t). In particular, we can compute a vector α+

t
in the 0-eigenspace of at that is linearly independent of the vectors described in Lemma 3.1.
Let H (2)

2 (t) = {s1, s2}, H (3)
5 (t) ∩ H (3)

2 (s1) = {g1, g2}, and H (3)
5 (t) ∩ H (3)

2 (s2) = {g3, g4}.
Then

α+
t = − 19

33 · 5
at − 23

3 · 5
as1 + 26

33 · 5

∑

q∈H (2)
3 (t)

aq + 24

32 · 5
(as1g1 + as1g−1

1
+ as1g2 + as1g−1

2
)

− 24

32 · 5
(as2g3 + as2g−1

3
+ as2g4 + as2g−1

4
)+ (ug1 + ug2)+ σtg1

212

33 · 5
xt

is a 0-eigenvector of at , and α+
t is not in the span of the eigenvectors described in Lemma 3.1.

Lemma 5.16 Any eigenvector of the adjoint action of at on V +
2 (t) in one the following:

(i) a scalar multiple of at which is a 1-eigenvector;
(ii) a linear combination of the ten α-vectors in Lemma 3.1 and the vector α+

t which is a
0-eigenvector;

(iii) a linear combination of the five β-vectors in Lemma 3.1 and xt which is a 1
22 -eigenvec-

tor;
(iv) a vector from the 10-dimensional commutator subspace {v − vϕ(t) | v ∈ V +

2 (t)} of the
action of t on V +

2 (t), which is a 1
25 -eigenvector.

After xt will be proved to be the zero vector, Lemma 5.16 will provide us with the eigen-
space decomposition of V2 = V with respect to the adjoint action of at (the 0-eigenspace of
at is of dimension 10; for example, αt ( f2, 3) can be deleted, and the remaining nine α-vectors
of Lemma 3.1, together with α+

t , give a basis of the 0-eigenspace).
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Applying the orthogonality condition of α+
t with the 1, 1

22 ,
1
25 -eigenvectors and xt with

the 0, 1, 1
25 -eigenvectors, we obtain a description of the scalar product on V +

2 (t)modulo one
indeterminate parameter �t .

Lemma 5.17 Let h ∈ (H (3)
5 (t) \ H (3)

5 (s1)), for the element s1 defined in Lemma 3.1, and let
�t = (x1, h). Then there is a function λ on the set of vectors b ∈ B(3A) ∪ {xt } such that

(i) (xt , b) = λ(b)�t ;
(ii) λ(b) = 0 if b �∈ H (3)

5 (t) ∪ {w, xt }.
Making use of the known action of at on V +

2 (t), we can apply the resurrection principle
Lemma 5.5 to express further products as linear combinations of vectors in

B(3A)(t) := B(3A) ∪ {xt }.
As defined in Lemma 3.1, let {s1, s2} = H (2)

2 (t) and {h1, h2} = H (3)
2 (t). Applying Lemma 5.5

first with

v = (as1 + as2) · uh1 , αv = αt (2) · α(3A)
t (h1), βv = αt (2) · β(3A)

t (h1),

and then with

v = (as1 − as2) · uh1 , αv = βt (2) · β(3A)
t (h1)− at (βt (2) · β(3A)

t (h1), at ),

βv = βt (2) · α(3A)
t (h1)

we express the product as1 · uh1 as a linear combination of vectors in B(3A)(t). On the other
hand, we introduce the vector xs1 and express as1 · uh1 as a linear combination of vectors in
B(3A)(s1) = B(3A) ∪ {xs1}. It turns out that in these two expressions for as1 · uh1 all vectors
from B(3A) have exactly the same coefficients, and the coefficient of xt in the first expression
is equal to the coefficient of xs1 in the second expression. This implies that

xt = xs1 .

Lemma 5.18 xt = 0.

Proof Let h ∈ (H (3)
5 (t) \ H (3)

5 (s1)) be the element used at the definition of �t . Applying
Lemma 5.17 (ii) for xs1 , we obtain (h, xs1) = 0. Hence xt = xs1 implies (h, xt ) = �t = 0
and so, by Lemma 5.17(i), xt is orthogonal to all vectors in V +

2 (t). In particular, (xt , xt ) = 0
and by (M1) xt = 0. ��

By Lemma 5.18, V2 = V and the action of at on V is known. The product at ·w = (at ·w)π
is given in Lemma 5.14, so the only explicit expression still missing for at · b, for b ∈ B(3A),
is the following.

For h ∈ H (3)
5 (t), let {s1} = H (2)

2 (t) \ H (2)
2 (h) and {s2} = H (2)

2 (t) ∩ H (2)
2 (h). Moreover,

let H (3)
5 (t) ∩ H (3)

2 (s1) = {g1, g2}, and H (3)
5 (t) ∩ H (3)

2 (s2) = {g3, g4} (so h ∈ {g3, g4}).
Lemma 5.19

at · uh = 2

32 · 5
at + 1

32 · 5
as2 − 1

32 · 5

∑

q∈H (2)
3 (t)∪{s1}

aq

+ 1

2 · 32 · 5
(as1g1 + as1g−1

1
+ as1g2 + as1g−1

2
)
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− 1

2 · 32 · 5
(as2g3 + as2g−1

3
+ as2g4 + as2g−1

4
)

+ 1

25

∑

d∈H (3)
2 (t)∪{h}

ud − 1

26

∑

c∈H (3)
2 (s1)

uc + σth
25

33 · 5
w.

��

There are two H -conjugacy classes on the pairs of 3-element subgroups, and the corre-
sponding product rules are the following.

Lemma 5.20 Let h ∈ H (3). Then the following assertions hold:
(i) if g ∈ H (3)

5 (h) and {t} = H (2)
2 (h) ∩ H (2)

2 (g), then

uh · ug = 1

32 · 5
(uh + ug)+ 25

34 · 52

⎛

⎜⎝2at −
∑

s∈H (2)
3 (t)

as

⎞

⎟⎠

+ 1

2 · 32 · 5

⎛

⎜⎝
∑

d∈H (3)
5 (t)

ud −
∑

b∈H (3)
3 (t)

ub

⎞

⎟⎠ ;

(ii) if g ∈ H (3)
2 (h) and t = h−1g−1hg, then

uh · ug = 1

5
(uh + ug)− 1

2 · 32 (uth + uht )+ 26

34 · 52 (2at − 3ahg − 3agh).

Proof (i) We have {h, g} = {h1, h2}, for the permutations h1, h2 defined in Lemma 3.1.
Applying the resurrection principle Lemma 5.5 with

v = uh1 · uh2 , vα = α
(3A)
t (h1) · α(3A)

t (h2), vβ = α
(3A)
t (h1) · β(3A)

t (h2),

a little computation in GAP gives the stated result.
(ii) There are 30 pairs {h, g} ⊂ H (3) corresponding to the second H -conjugacy class of pairs
of order 3 subgroups, and we write a system of linear equations for the 30 unknowns uh · ug

the following way. For the 15 elements t ∈ H (2), g1, g2 as defined in the definition of α+
t ,

and i = 1, 2, applying Lemma 5.5 with

v = uhi · (ug1 + ug2), vα = α
(3A)
t (hi ) · α+

t , vβ = β
(3A)
t (hi ) · α+

t ,

we express uhi · ug1 + uhi ug2 as a linear combination of vectors in V . Yet the system of 30
linear equations obtained in this way is still insufficient to find all the 30 unknowns uh ·ug in
question, since the rank of the system turns out to be only 22 (as checked by GAP). In order
to close the gap, we write further 30 equations using α−

t instead of α+
t (here α−

t is defined
by exchanging the roles of s1 and s2 in the definition of α+

t : an arbitrary choice was made
while defining α+

t ). The total rank finally becomes 30, and solving the system in GAP gives
all the desired products uh · ug. ��

Again the product expression in Lemma 5.20 (ii) is the same as the one in the proof of
Lemma 4.16 in [6].

The final two product rules involve the vector w.
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Lemma 5.21 If h ∈ H (3) then

uh · w = 1

25 · 5

∑

t∈H (2)
5 (h)

σth at + 1

3 · 5
w;

w · w = 33 · 5

216

∑

t∈H (2)

at − 35 · 5

221

∑

h∈H (3)

uh .

Proof Since almost all products in the algebra are already known, these proofs are easy
applications of Lemma 5.5. ��

The completed case is summarized in the following.

Proposition 5.22 Let H3A = (H, H (2), V, ( , ), · , ϕ, ψ) be a Majorana representation of
H ∼= A5, where at = ψ(t) for t ∈ H (2), and suppose that whenever t, s ∈ H (2) with
o(ts) = 3 the subalgebra generated by at and as is 4-dimensional (of type 3A). Then

(i) V is 26-dimensional with basis {at | t ∈ H (2)} ∪ {uh | h ∈ H (3)} ∪ {w}, where
w = ∑

f ∈H (5) w f with H (5) being a 6-element subset of a conjugacy class of ele-
ments of order 5 in H, which intersects every cyclic subgroup of that order;

(ii) the inner product ( , ) is as described in Lemmas 4.1 and 4.2;
(iii) the algebra product · is as described in Lemmas 2.3, 5.12, 5.14, 5.19, 5.20 and 5.21.

Thus the isomorphism type of H3A is uniquely determined and H3A ∼= Mζ (3A)(H). ��

6 Identities

In this section we determine the identities in the algebras supporting the Majorana represen-
tations H3C and H3A of A5 and calculate their scalar squares.

Lemma 6.1 Let (V, ( , ), · ) be a triple satisfying (M1), let ι be an identity, and let d be an
idempotent (so that d · d = d and ι · v = v for every v ∈ V ). Then

(i) the scalar product of ι and d is equal to the scalar square of d;
(ii) ι is the only identity in V .

Proof Assertion (i) is implied by the following sequence of equalities

(ι, d) = (ι, d · d) = (ι · d, d) = (d, d).

Let ι′ be another identity, and put δ = ι′ − ι. Then δ annihilates every vector of V , and since
v = v · ι for every v ∈ V , we have

(δ, v) = (δ, v · ι) = (δ · ι, v) = (0, v) = 0,

which shows that δ is perpendicular to every vector from V . Since the scalar product is a
positive definite form on V , this means that δ is the zero vector, ι′ = ι, and (ii) follows. ��
Proposition 6.2 If

a =
∑

t∈H (2)

at , and u =
∑

h∈H (3)

uh,

then
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(i) ι3C = 2
3 a is the unique identity of H3C , and (ι3C , ι3C ) = 10;

(ii) ι3A = 16
35 a + 3

14 u is the unique identity of H3A, and (ι3A, ι3A) = 72
7 .

Proof For symmetry reasons, we are seeking the identities of the algebras in the form

ι3C = x a, and ι3A = y a + z u + r w,

for some real parameters x, y, z and r (it should probably be emphasised that a depends on
the type X of 3-elements in H and note that in the 3C-case, the vector w is equal to 0).

The system of equations ι3C · at = at for t ∈ H (2), ι3C · w f = w f for f ∈ H (5) has the
unique solution x = 2

3 . Similarly, the equations ι3A · at = at for t ∈ H (2), ι3A · uh = uh

for h ∈ H (3), ι3A · w = w has the unique solution y = 16
35 , z = 3

14 , r = 0. So, we found
identities ιX in the algebras and, by Lemma 6.1 (ii), ιX is the only identity of HX .

The scalar squares of the identities can be computed using Lemmas 4.1 and 4.2. (Using
Lemma 6.1 (i), the scalar square computations can also be done by hand.) ��

7 The axiom (2A)

In this section we prove Theorem 2. This theorem demonstrates that the axiom (2A) does not
follow from the other axioms of Majorana representations.

In this section, let

R = (H, T, V, ( , ), · , ϕ, ψ)
be an arbitrary representation of H ∼= A5 satisfying (M1), (M3)–(M7), (2B), and the property
that there exist s, t ∈ H (2) such that o(st) = 3 and at and as generate an algebra of type 3C .

We shall prove Theorem 2 by mimicking the argument used for the proof of Theorem 1.
Let V1 and V2 denote the linear spans in V of

{at | t ∈ H (2)} and {at · as | t, s ∈ H (2)},
respectively. We have V1 ≤ V2, and both V1 and V2 are H -submodules in V .

Lemma 7.1 Let t and s be distinct elements in H (2), let r = o(ts), and let Y be the subal-
gebra in V generated by at and as . Then exactly one of the following holds:

(i) r = 2 and Y is 2-dimensional of type 2B linearly spanned by at and as;
(ii) r = 5 and Y is 6-dimensional of type 5A linearly spanned by at , as, asts, atst , aststs

and wts (where wts = wst = −w(ts)2 = −w(ts)3);
(iii) r = 3 and Y is 3-dimensional of type 3C linearly spanned by at , as and atst .

Proof There are 15 unordered pairs of commuting involutions in H , and H acts transitively by
conjugation on the set consisting of these 15 pairs. Hence, for all t, s ∈ H (2) with o(ts) = 2,
the algebra generated by at and as is of the same type. Since R satisfies (2B), this common
type must be 2B and part (i) holds. Part (ii) follows from Proposition 1.1.

The proof of (iii) is similar to (i). There are 30 unordered pairs {s, t} of involutions in H
with o(st) = 3. The group H acts transitively by conjugation on the set consisting of these 30
pairs, so for all pairs {s, t}, as and at generate an algebra of the same type. It is a hypothesis
of Theorem 2 that this common type is 3C. ��

As a consequence, we obtain
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Lemma 7.2 (i) The vector space V2 is spanned by the 21-element set

S(2B,3C) = {at | t ∈ H (2)} ∪ {w f | f ∈ H (5)}.
(ii) The H-action on V2 permutes the set S(2B,3C), with the same permutation action as the

H-action by conjugation on the set of subgroups of order 2 and 5 in H. ��

For t ∈ H (2), let H (2)
2 (t) = {s1, s2}, H (3)

2 (t) = {h1, h2}, and H (5)
2 (t) = { f1, f2}. More-

over, let G1 = H (3)
5 (t) ∩ H (3)

2 (s1) and G2 = H (3)
5 (t) ∩ H (3)

2 (s2).

Lemma 7.3 Let t ∈ H (2), and let si , hi , fi ,Gi as defined above. Then, for i ∈ {1, 2}, each
of the following is an eigenvector of (the adjoint action of) at on V . The α- and β-vectors
are 0- and 1

22 -eigenvectors, respectively.

αt (si ) = asi ;
αt ( fi , 1) = − 3

25
at +

∑

1≤k≤4

a f −k
i t f k

i
; αt ( fi , 2) = w fi − 3 · 7

212 at + 7

26

∑

k=1,4

a f −k
i t f k

i
;

αt (hi ) = ah−1
i thi

+ ahi th−1
i

− 1

25
at ;

αt (si , hi ) = 3

26 asi + 3

27 (ah−1
i thi

+ ahi th−1
i
)− 1

27 (ah−1
3−i th3−i

+ ah3−i th−1
3−i
)

− 1

27

∑

g∈G3−i

(as3−i g + as3−i g−1)+ ws3−i hi + ws3−i h−1
i

;

βt ( fi ) = w fi − 1

27 (a f −1
i t fi

+ a fi t f −1
i

− a f −2
i t f 2

i
− a f −3

i t f 3
i
). ��

Proof The eigenvectorsαt (si ), αt ( fi , 1), αt ( fi , 2), αt (hi ), βt ( fi ) can be seen inside the sub-
algebras generated by at together with one further Majorana generating axis.

The vector αt (si , hi ) is the product of αt (si ) and αt (hi ), expanded as a linear combina-
tion of S(2B,3C) using the product rules in Table 2. The identification between H (2) and the
variables in Table 2 is provided by Lemma 7.1. ��

For each t ∈ H (2), the w f terms appearing in the vectors αt (si , hi ) are

∑

f ∈H (5)
5 (t)

w f and −
∑

f ∈H (5)
3 (t)

w f .

(Which of these two expressions appears in which αt (si , hi ) depends on the arbitrary choice
between s1 and s2; the choice between h1 and h2 does not change these two expressions.)
Hence, using that the two elements in H (5)

r (t) are t-conjugates of each other for r ∈ {3, 5}
and at · αt (si , hi ) = 0, Lemma 3.3 gives the products at ·w f for all f ∈ H (5)

3 (t) ∪ H (5)
5 (t).

The still missing products are w f · w f ′ , for f, f ′ ∈ H (5), f �= f ′. Each such pair
{ f, f ′} occurs as { f1, f2} for some t ∈ H (2), and their product can be computed by applying
Lemma 5.5 with W = V2, a = at ,

v = w f1 · w f2 , αv = αt ( f1, 2) · αt ( f2, 2), βv = αt ( f1, 2) · βt ( f2).

The explicit formulas are the following.
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Lemma 7.4 For t ∈ H (2) and f ∈ H (5)
r (t) with r ∈ {3, 5},

at · w f = (−1)
r−1

2
1

213 at +
∑

q∈H (2)
5 (t)

σqt
1

214 aq +
∑

p∈H (5)
2 (t)

1

27wp + 1

26w f − 1

26wt f t .

��
Lemma 7.5 For t ∈ H (2) and f, g ∈ H (5)

2 (t),

w f · wg = 3

218 at − 33

220

∑

s∈H (2)
2 (t)

as + 33

221

∑

r∈H (2)
5 (t)

ar − 52

214

∑

p∈H (5)
3 (t)

wp + 52

214

∑

q∈H (5)
5 (t)

wq .

��
Since the set V2 is closed for the algebra product, we have V = V2.

Lemma 7.6 For t, s ∈ H (2) the following hold:

(i) if t = s then (at , as) = 1;
(ii) if s ∈ H (2)

2 (t) then (at , as) = 0;

(iii) if s ∈ H (2)
3 (t) then (at , as) = 1

26 ;

(iv) if s ∈ H (2)
5 (t) then (at , as) = 3

27 ;

(v) if f ∈ H (5) then (w f , w f ) = 53·7
219 ;

(vi) if f ∈ H (5)
2 (t), then (at , w f ) = 0;

(vii) if f ∈ H (5)
3 (t), then (at , w f ) = − 1

213 ;

(viii) if f ∈ H (5)
5 (t), then (at , w f ) = 1

213 ;

(ix) if f, g ∈ H (5)
2 (t), f �= g then (w f , wg) = 3·11

219 .

Proof Parts (i)–(vi) can be read out from Table 2. Parts (vii) and (viii) follow from the
orthogonality of vectors αt (si ) and βt ( f j ), i, j ∈ {1, 2}, in Lemma 7.3, utilizing the already
known (i)–(vi). Finally, (ix) can be obtained from the orthogonality of αt ( f1, 2) and βt ( f2)

in Lemma 7.3. ��
Since the scalar products in V are known, we can check in GAP that there are no vectors

in V with scalar square 0, i.e., the dimension of V is 21. For t ∈ H (2), the dimensions of
the 0, 1

22 ,
1
25 -eigenspaces are 10, 2, and 8, respectively. The eigenspaces are spanned by the

ten α-vectors listed in Lemma 7.3, the two β-vectors in that lemma, and the set of vectors
{v − vϕ(t) | v ∈ S(2B,3C)}, respectively.

Finally, we compute the identity of the algebra. Let

a =
∑

t∈H (2)

at , and w =
∑

f ∈H (5)

w f .

Lemma 7.7 The identity of the algebra is ιR = 4
5 a, and (ιR, ιR) = 12.

Proof For symmetry reasons, we seek the identity of the algebra in the form ιR = xa + yw,
for some real numbers x, y. The linear system of equations ιR · v = v, for v ∈ S(2B,3C),
has the unique solution x = 4

5 , y = 0. By Lemma 6.1(ii), ιR is the unique identity of the
algebra. ��
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Since the representation R we have constructed is not based on an embedding into the
Monster, we have to check that the axioms (M1), (M3)–(M7) hold. The eigenvalues of the
Gram matrix of the algebra are 5

22 with multiplicity 1, 5·13
26 with multiplicity 5, 3·5

24 with

multiplicity 4, 5·13
215 with multiplicity 1, and the two roots of

x2 − 258469

218 x + 3 · 5 · 13 · 17

221 ,

each with multiplicity 5. We also computed that the relation (u, v ·w) = (u · v,w) holds for
all u, v, w ∈ S(2B,3C); hence, by the linearity of the algebra and scalar products, the relation
holds for all u, v, w ∈ V . Thus (M1) is satisfied.

The axioms (M3)–(M5) follow from our construction. We checked the validity of (M6)
and (M7) by verifying that for each t ∈ H (2), the eigenvectors of at satisfy the fusion rules
of Table 1.

We prove that R satisfies (M2) using the following lemma, which is based on ideas from
pp. 530–531 of [1].

Lemma 7.8 Let V be an n-dimensional algebra with commutative algebra product · and
scalar product ( , ). Let {vi | 1 ≤ i ≤ n} be a basis of V , and define an (n2 ×n2)-dimensional
matrix B = (bi j,k�) in the following way. The rows and columns are indexed by the ordered
pairs (i, j) for 1 ≤ i, j ≤ n, and

bi j,kl = (vi · vk, v j · v�)− (v j · vk, vi · v�).
If B is positive semidefinite then V satisfies Norton’s inequality (M2).

Proof For x, y ∈ V , write x and y as linear combinations

x =
n∑

i=1

xivi and y =
n∑

j=1

y jv j

and form the n2-long vector z with entries xi y j . In this vector z, the coordinate xi y j is in the
position indexed by (i, j) in the definition of B. Then the inequality (x ·x, y ·y)−(x ·y, x ·y) ≥
0 is equivalent to zBzT ≥ 0. Hence the positive semidefinity of B implies that (M2) holds
in V . ��

Igor Faradzev computed that, for the 21-dimensional algebra of this section, the matrix B
constructed from S(2B,3C) is positive semidefinite, with a 395-dimensional nullspace. Hence
(M2) holds in R.
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